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Abstract. In this paper we discuss the variational inequality problems VIP�X�F�, where F is
assumed to be a strongly monotone mapping from �n to �n, and the feasible set X= �l�u
 has the
form of box constraints. Based on the Chen-Harker-Kanzow smoothing functions, first we present
an explicit continuation algorithm (ECA) for solving VIP�X�F�. The ECA possesses main features
as follows: (a) at each iteration, it yields a new iterative point by solving a system of equations in
��n+s� with a parameter and nonsingular Jacobian matrix, where s=��j � −�<lj <uj <+���, (b)
it generates a sequence of iterative points in the interior of the feasible set X. Secondly we give
an implicit continuation algorithm (ICA) for solving VIP�X�F�, the prime character of the ICA is
that it solves only one, rather than a series of, system of nonlinear equations to obtain a solution
of VIP�X�F�. The two proposed algorithms are shown to possess strongly global convergence.
Finally, some preliminary numerical results of the two algorithms are reported.
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1. Introduction

This paper concerns the solution of the following variational inequality problem
(VIP). Let

l=�l1�����ln�
T � u=�u1�����un�

T � li∈�∪�−��� ui∈�∪�+��� li 	=ui�

F �x�=�F1�x������Fn�x��
T � �n 
→�n�

Then VIP with box constraints is to find a vector x∗ ∈�n such that

VIP�X�F� x∗ ∈X� F�x∗�T �x−x∗��0� ∀x∈X
def= �l�u
� (1.1)

This problem has extensive applications. For example, VIP�X�F� of the form
(1.1) can be considered as special cases of the standard variational inequality
problem

VIP�C�F� x∗ ∈C� F�x∗�T �x−x∗��0� ∀x∈C⊆�n� (1.2)
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and the variational inequality problem with inequality constraints

VIP�D�F� x∗ ∈D� F�x∗�T �x−x∗��0�

∀x∈D
def= �x∈�n �gi�x��0� i∈��� (1.3)

where the index set �=�1�������. In addition, the nonlinear complementarity
problem (NCP)

x�0� F �x��0� F �x�Tx=0� (1.4)

and the normal bound constraints VIP can be regarded as special cases of problem
(1.1) if we take l=0�u=+� and l�u∈�n respectively. If F�x� is a gradient func-
tion of some real-value function f � �n 
→�, then the problem (1.1) is equivalent
to the stationary condition of optimization problem min�f �x��l�x�u�.

It is known that the optimizing methods and the continuation methods have
recently become two kinds of very important and effective approaches to solving
VIPs and NCPs. The basic idea of the former is to transform a VIP or/and a NCP
into an equivalent (in a sense) optimization problem, and that of the latter is to
reformulate a VIP or/and a NCP as an equivalent system of nonlinear equations.
For example, under mild conditions, Kanzow and Fukushima [11] and Ferris et al.
[4] used respectively a so called D-gap function and a complementarity function
(CP-function) to transform the box constrained VIP�X�F� into an equivalent
unconstrained optimization problem and an optimization problem with the simple
box constrained set X, then they presented the associated algorithms based on
the equivalent programs; Hotta and Yoshise [6], with the help of the Chen-
Harker-Kanzow-Smale CP-function, used a homotopy function and optimization
technique to present an effective algorithm for solving the standard NCP under
mild conditions.

The continuation methods for VIP�D�F� (1.3) are based generally on a known
result as follows: if all functions gi are concave and the linearly independent
constrained qualification for the feasible set D of (1.3) holds, Harker and Pang
[5] proved that the problem (1.3) is equivalent to the following KKT problem

F�x�−∑
i∈�

yi�gi�x�=0� gi�x��0� yi�0� yigi�x�=0� ∀i∈�� (1.5)

Based on problem (1.5) above and a generalized complementarity function (GCP-
function), the continuation methods transform the VIP (1.3) into an equivalent
system of nonlinear equations, see Refs. [1, 7, 8, 12]. Our interest in this paper is
laid on the continuation method for the box constrained VIP (1.1). Although the
problem (1.1) discussed in the paper may be solved theoretically by the proposed
continuation methods [1, 7, 8, 12], the number of the multiplier variables yi

in (1.5) would be n+s, where s=��i�−�< li <ui <+���, and the system of
equations solved at each iteration would consist of 2n+s equations and 2n+s
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variables, so the scale would be very large. Hence the proposed continuation
methods (see [1, 7, 8, 12]) for VIP (1.3) would be ineffective if they were used
directly to solve the problem (1.1).

Based on the reasons above, this paper presents directly an explicit continuation
algorithms and an implicit continuation algorithms for the problem (1.1) with box
constraints. The main ideas of the algorithms are, by means of the Chen-Harker-
Kanzow function, to transform respectively the problem (1.1) into an equivalent
sequence of system of nonlinear equations which consists of only n+s equations
and n+s variables, and only one equivalent system of nonlinear equations.

The structure of this paper is as follows. In Section 2, the explicit continuation
algorithm (ECA for abbreviation) is given and its some important properties
are discussed. Section 3 proves the existence and uniqueness of the solution for
the system of equations needed to be solved in the ECA. Section 4 analyses
and proves the strongly global convergence and the stability of the ECA. The
implicit continuation algorithm (ICA for abbreviation) is given in Section 5. Some
preliminary numerical results are reported in Section 6. We conclude with some
final remarks in Section 7.

For sets J and I , we use the following notation throughout this paper:

xJ =�xj� j∈J�� FJ �x�=�Fj�x�� j∈J��

�xJ
FI�x�=

(
aji=

�Fi�x�

�xj

� j∈J� i∈ I

)
� (1.6)

that is �xJ
FI�x� denotes the gradient (matrix) of vector value function FI�x�

with respect to xJ , so the transpose ��xJ
FI�x��

T denotes the Jacobian matrix of
function FI�x� with respect to xJ .

2. The Explicit Continuation Algorithm

We first recall some well-known definitions and results which will be used in this
paper.

DEFINITION. A function F � C→�n is said to be:

(i) monotone over set C if(
F�x1�−F�x2�

)T
�x1−x2��0� ∀x1�x2∈C 

(ii) strongly monotone over set C (with modulus !>0) if(
F�x1�−F�x2�

)T
�x1−x2��!�x1−x2�2� ∀x1�x2∈C�

THEOREM 1. Suppose that C⊆�n is a nonempty, closed and convex set, and
F � C→�n is a strongly monotone and continuous function. Then the problem
VIP�C�F� (1.2) has a unique solution.
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THEOREM 2. Suppose that the function F is continuous and functions gi are
concave and continuously differentiable, and the linear independence constraint
qualification (LICQ, see Definition 2 in [8]) holds for the feasible set D in
problem (1.3). Then the problem VIP�D�F� (1.3) is equivalent to the KKT
problem (1.5), i.e., �x�y� is a solution of (1.5) if and only if x is a solution of
(1.3).

Theorem 1 above can be seen in [5] (Corollary 3.2) or [12] (Theorem 2.2) or [9]
(Theorem 2.12), and Theorem 2 above can be seen in [5] (Proposition 2.2).

Throughout this paper, we suppose the following assumption holds.

ASSUMPTION A. The function F � �n 
→�n in (1.1) is continuously differen-
tiable and strongly monotone.

For convenience, we divide the set �1�����n� into four subsets as follows:

I=�i�−�<li <ui=+��� J =�j �−�= lj <uj <+���

P=�p�−�<lp <up <+��� Q=�q �−�= lq� uq =+���

Without loss of generality, furthermore suppose that

I=�1�����m�� J =�m+1�����m+r��

P=�m+r+1�����m+r+s�� Q=�m+r+s+1������m+r+s+h�=n��

and denote vector y by

y=�yp� p∈P�∈�s�

THEOREM 3. The problem (1.1) and the following system (2.1):

�xi−li�Fi�x�=0� xi−li�0� Fi�x��0� ∀i∈ I� (2.1a)

−Fj�x��uj−xj�=0� uj−xj �0� −Fj�x��0� ∀j∈J� (2.1b)(
Fp�x�+yp

)
�xp−lp�=0� Fp�x�+yp�0� xp−lp�0� ∀p∈P� (2.1c)

Fq�x�=0� ∀q∈Q� (2.1d)

yp�up−xp�=0� yp�0� up−xp�0� ∀p∈P� (2.1e)

are equivalent, i.e., x is a solution of (1.1) if and only if there exists a y∈�s

such that �x�y� is a solution of (2.1). Moreover, both the problems (1.1) and
(2.1) have a unique solution.
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Proof. To finish the proof by Theorem 2, we define

gi�x�=xi−li�i∈ I gj�x�=uj−xj�j∈J gp�x�=xp−lp�p∈P 

gp+s�x�=up−xp�p∈P� ej =�0�����0�1�jth��0�����0�T ∈�n�j=1�����n�

(2.2)

Then (1.1) is a special case of (1.3) where functions gi are defined by formula
(2.2) above and the index set �=�1�2�����m+r+2s�. Since the LICQ for the
feasible set X=D always holds and functions gi are all concave and continuously
differentiable, thus we can conclude from Theorem 2 that the problem (1.1)
is equivalent to the problem (1.5), i.e., the problem (1.1) is equivalent to the
following problem:

F�x�−∑
i∈I

yiei+
∑
j∈J

yjej−
∑
p∈P

y′
pep+

∑
p∈P

ypep=0� (2.3a )

yi�xi−li�=0� yi�0� xi−li�0� i∈ I 

yj�uj−xj�=0� yj �0� uj−xj �0� j∈J (2.3b )

y′
p�xp−lp�=0� y′

p�0� xp−lp�0� p∈P 

yp�up−xp�=0� yp�0� up−xp�0� p∈P� (2.3c )

On the other hand, it is obvious that the problem (2.3) is equivalent to (2.1), so
the equivalency between (1.1) and (2.1) is proved.

Finally, according to the fact that X is a closed convex set and F is strongly
monotone and Theorem 1, we know that (1.1), and so (2.1), has a unique solution.
So the proof is finished. �

Let parameter +�0, consider the following perturbed complementarity problem
associated with (2.1):

�xi−li�Fi�x�=+� xi−li�0� Fi�x��0� ∀i∈ I� (2.4a )

−Fj�x��uj−xj�=+� uj−xj �0� −Fj�x��0� ∀j∈J� (2.4b )(
Fp�x�+yp

)
�xp−lp�=+� Fp�x�+yp�0� xp−lp�0� ∀p∈P� (2.4c )

Fq�x�=0� ∀q∈Q� (2.4d )

yp�up−xp�=+� yp�0� up−xp�0� ∀p∈P� (2.4e )

We know, with the help of some generalized complementarity function (GCP-
function) ,� �3→� (see [2, 8, 10, 13]), that problem (2.4) can be reformulated
equivalently as a system of nonlinear equations. In this paper, we choose the
GCP-function given by Chen, Harker and Kanzow [2, 11] as follows.

,�a�b�+�=a+b−√
�a−b�2+4+� for �a�b�+�∈�2×�0�+��� (2.5)
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Of course, one may choose other forms of GCP-function (see Section 7 of [10]),
and they have the same role. The following results on function , can be proved
easily or seen in [13].

LEMMA 1. For any +�0, we have

(i) ,�a�b�+�=0 if and only if a�0�b�0�ab=+ 
(ii) ,�a�b�+�=c if and only if �a−c/2��0��b−c/2��0 and �a−c/2�

�b−c/2�=+;
(iii) ,�a�b�+��0 if and only if a�0�b�0�ab�+�

Let us define vector-value functions by

0I�x�y�+�=�,�xi−li�Fi�x��+�� i∈ I�� (2.6a )

0J�x�y�+�=�−,�uj−xj�−Fj�x��+�� j∈J�� (2.6b )

01
P�x�y�+�=�,�xp−lp�Fp�x�+yp�+�� p∈P�� (2.6c )

0Q�x�y�+�=FQ�x�=�Fq�x�� q∈Q�� (2.6d )

02
P�x�y�+�=�−,�up−xp�yp�+�� p∈P�� (2.6e )

0�x�y�+�=




0I�x�y�+�
0J�x�y�+�
01

P�x�y�+�
0Q�x�y�+�
02

P�x�y�+�


� (2.7)

From Lemma 1, one has directly the following result.

THEOREM 4. For any +�0, the equation system 0�x�y�+�=0 and the system
(2.4) are completely equivalent, i.e., �x�y�+� is a solution of 0�x�y�+�=0 if
and only if it is a solution of (2.4).

The reasons why we use the minus sign for i∈J ∪P in �2�6b� and �2�6e� are
follows. The minus sign for j∈J in �2�6b� can ensure the nonsingularity of the
Jacobian matrix of 0, and the following proposition motivates why the minus
sign for p∈P in �2�6e� is used.

PROPOSITION 1. Let �x�y�∈�n×�s be fixed, and +�0. Then the following
hold:

(i) lima→+�,�a�b�+�=2b� limb→+�,�a�b�+�=2a 

(ii) 21
def= limlp→−�,�xp−lp�Fp�x�+yp�+�=2�Fp�x�+yp� 
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(iii) −,�up−xp�yp�+�=−,�up−xp�1−Fp�x��+�, which has the similar form
of (2.6b) if 1 small enough.

Proof. We have from (2.5)

lim
a→+�

,�a�b�+�= lim
a→+�

(
�a+b�−√

�a−b�2+4+
)

= lim
a→+�

(
�a+b�−√

�a−b�2+4+
)(

�a+b�+√
�a−b�2+4+

)
a+b+√

�a−b�2+4+

= lim
a→+�

4ab−4+

a+b+√
�a−b�2+4+

= lim
a→+�

4b−4+

a

1+ b
a
+
√(

1− b
a

)2+4 +

a2

=2b�

Similarly, one has limb→+�,�a�b�+�=2a. Moreover, we have from part (i)

lim
lp→−�

,�xp−lp�Fp�x�+yp�+�= lim
a→+�

,�a�Fp�x�+yp�+�=2�Fp�x�+yp��

Lastly, in view of yp=1−Fp�x�, part (iii) is clear and the proof is completed. �

For convenience of discussion, we denote the partial derivatives of , by

2�a�b�+�
def= �,�a�b�+�

�a
=1− a−b√

�a−b�2+4+
�

3�a�b�+�
def= �,�a�b�+�

�b
=1+ a−b√

�a−b�2+4+
� (2.8)

The functions 2 and 3 above possess an important property as follows, its proof
is elementary and omitted.

PROPOSITION 2. The functions 2�·� and 3�·� satisfy
0<2�a�b�+�<2� 0<3�a�b�+�<2� ∀�a�b�+�∈�2×�0�+��� (2.9)

To analyse the gradient matrix of function 0�x�y�+�, we introduce the vectors
and diagonal matrices as follows:

d=�x�y� z=�x�y�+��

DI =diag�2�xi−li�Fi�x��+�� i∈ I��

RI =diag�3�xi−li�Fi�x��+�� i∈ I�� (2.10)
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DJ =diag�2�uj−xj�−Fj�x��+��j∈J��

RJ =diag�3�uj−xj�−Fj�x��+��j∈J�� (2.11)

D1
P =diag�2�xp−lp�Fp�x�+yp�+��p∈P��

R1
P =diag�3�xp−lp�Fp�x�+yp�+��p∈P�� (2.12)

D2
P =diag�2�up−xp�yp�+�� p∈P��

R2
P =diag�3�up−xp�yp�+�� p∈P�� (2.13)

D=




DI

DJ

D1
P

0h×h


� R=




RI

RJ

R1
P

Ih×h


� (2.14)

H=�0s×m� 0s×r � R1
P� 0s×h�� GT =�0s×m� 0s×r � D2

P� 0s×h�� (2.15)

By elementary computation and analysis, the gradients of functions
0I�0J �0

1
P�0

2
P and 0Q can be given by the following proposition.

PROPOSITION 3. For any parameter +>0, the functions 0I�x�y�+�,
0J�x�y�+�, 01

P�x�y�+�, 02
P�x�y�+� and 0Q�x�y�+� are all continuously differ-

entiable on �n×�s, and their gradients can be expressed as follows, denoted
them simply by �d0I , �d0J , �d0

1
P , �d0Q, and �d0

2
P , respectively.

�d0I =




DI +�xI
FI�x�RI

�xJ
FI�x�RI

�xP
FI�x�RI

�xQ
FI�x�RI

0s×m


� �d0J =




�xI
FJ �x�RJ

DJ +�xJ
FJ �x�RJ

�xP
FJ �x�RJ

�xQ
FJ �x�RJ

0s×r


� (2.16)

�d0
1
P =




�xI
FP�x�R

1
P

�xJ
FP�x�R

1
P

D1
P+�xP

FP�x�R
1
P

�xQ
FP�x�R

1
P

R1
P


� �d0Q=




�xI
FQ�x�

�xJ
FQ�x�

�xP
FQ�x�

�xQ
FQ�x�

0s×h


�

�d0
2
P =




0m×s

0r×s

D2
P

0h×s

−R2
P


� (2.17)

�d0�x�y�+�=��d0I��d0J ��d0
1
P��d0Q��d0

2
P�

=
(
D+�F�x�R G

H −R2
P

)
� (2.18)
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THEOREM 5. The gradients �d0�x�y�+�, and so the Jacobian matrices
��d0�x�y�+��T , of 0�x�y�+� are nonsingular for all d=�x�y�∈�n×�s and
all +>0.
Proof. It is sufficient to show that the equation system �d0�x�y�+��wT �vT �T =

0 has a unique solution zero. Suppose that �wT �vT �T ∈��n+s� such that
�d0�x�y�+��wT �vT �T =0, then we have from (2.18)

�d0�x�y�+�

(
w
v

)
=
(
Dw+�F�x�Rw+Gv

Hw−R2
Pv

)
=
(

0
0

)
�

Combining this equations with (2.15), we deduce

�Rw�T �Dw+�F�x�Rw+Gv�=0� Hw−R2
Pv=R1

PwP−R2
Pv=0� (2.19)

From (2.14)–(2.15) and the second equation of (2.19), we obtain

wTRGv=�R1
PwP�

TD2
Pv=�R2

Pv�
TD2

Pv=vT �R2
PD

2
P�v� (2.20)

which, together with the first equation of (2.19), gives

wT�RD�w+�Rw�T�F�x��Rw�+vT �R2
PD

2
P�v=0� (2.21)

In addition, Proposition 2 (i.e., (2.9)) shows that all the matrices DI , DJ , D
1
P , D2

P ,
RI , RJ , R1

P and R2
P are all diagonal and positive definite, furthermore, the matrix

D (see (2.14)) is diagonal and positive semi-definite, and the matrices R and
R2

PD
2
P both are diagonal and positive definite. Also, the matrix �F�x� is positive

definite for x∈�n since F�x� is strongly monotone (see Theorem 2.8 in [9]).
Thus, from (2.21), we have Rw=0 and v=0, which show that �w�v�=�0�0�.
Hence the proof is completed. �

Based on the system of equations 0�x�y�+�=0, now we present our explicit
continuation algorithm for problem (1.1) as follows.

Explicit continuation algorithm (ECA for abbreviation)

Step 0� Choose a stopping tolerance ;>0 and an error function err�x�y� (its
specific construction can be seen in the later formula �2�22� in this paper
or in �1
), choose an arbitrary initial point xo∈X= �l�u
�yo∈�s, and
any sequence �+k� such that +k >0 and limk→�+k=0. Let k=0, go to
Step 1;

Step 1� Starting with �xk�yk�, solve the equation system 0�x�y�+k+1�=0 by
some given method (e.g. Newton, Newton type or quasi-Newton methods)
to obtain a new point �xk+1�yk+1�, i.e., the (approximate) solution of
0�x�y�+k+1�=0;
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Step 2� If err�xk+1�yk+1�<;, stop. Otherwise, let k �=k+1, go back to Step 1.

Based on formula (2.1), we can construct a specific error function err�x�y� as
follows.

err�x�y�=∑
i∈I

�min�xi−li�Fi�x���
2+∑

j∈J

�min�uj−xj�−Fj�x���
2+

+�FQ�x��2+∑
p∈P

{
�min�yp�up−xp��

2+

+�min�xp−lp�Fp�x�+yp��
2
}
� (2.22)

THEOREM 6 (See [17]). Let +>0 and �x+�y+� be a solution of 0�x�y�+�=0.
Suppose that Newton method is used to solve 0�x�y�+�=0 with initial point
�xo�yo� located in a small neighbourhood of �x+�y+�. Then the ECA will converge
to �x+�y+� at a quadratic rate.

3. Existence and Uniqueness of the Solution to Equation ��x�y���=0
In this section, we prove that the equation 0�x�y�+�=0 has a unique solution
and it is continuous with respect to the parameter +>0. The following lemma
from [14] is useful in the subsequent proof.

LEMMA 2. Suppose that ak�bk�0� k=1�2� Then

�a1−b1��a2−b2�� �a1a2−b1b2�� (3.1)

LEMMA 3. Let +1 >0, +2 >0, and suppose that �x1�y1� and �x2�y2� are solu-
tions of 0�x�y�+1�=0 and 0�x�y�+2�=0, respectively. Then

!�x1−x2�2
��F�x1�−F�x2��T �x1−x2���m+r+2s��+1−+2�� (3.2)

Proof. From Theorem 4 one knows �x1�y1� and �x2�y2� are solutions of system
(2.4) for parameters +1 and +2, respectively. So we have from �2�4a� (note that
x1

i −li >0, x2
i −li >0, i∈ I)

Fi�x
1�= +1

x1
i −li

� Fi�x
2�= +2

x2
i −li

� i∈ I �

Multiplying the two equations above by �x1
i −x2

i � and �x2
i −x1

i � respectively, then
adding them, we have

�Fi�x
1�−Fi�x

2���x1
i −x2

i �=�x1
i −x2

i �

(
+1

x1
i −li

− +2

x2
i −li

)
� i∈ I �
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On the other hand, we get from Lemma 2

�x1
i −x2

i �

(
+1

x1
i −li

− +2

x2
i −li

)
=��x1

i −li�−�x2
i −li��

(
+1

x1
i −li

− +2

x2
i −li

)
� �+1−+2��

Thus

�Fi�x
1�−Fi�x

2���x1
i −x2

i �� �+1−+2�� i∈ I �

�FI�x
1�−FI�x

2��T �x1
I −x2

I �� �I �·�+1−+2�=m�+1−+2�� (3.3)

Similarly, we can prove

�FJ �x
1�−FJ�x

2��T �x1
J −x2

J ��r �+1−+2�� (3.4)

Also in view of x1
p−lp >0�x2

p−lp >0, we have from �2�4c�

Fp�x
1�= +1

x1
p−lp

−y1
p� Fp�x

2�= +2

x2
p−lp

−y2
p� p∈P�

Multiplying the two equations above by �x1
p−x2

p� and �x2
p−x1

p� respectively, then
adding them, we have

�Fp�x
1�−Fp�x

2���x1
p−x2

p�=�x1
p−x2

p�

(
+1

x1
p−lp

− +2

x2
p−lp

)
+�x2

p−x1
p��y

1
p−y2

p�

=��x1
p−lp�−�x2

p−lp��

(
+1

x1
p−lp

− +2

x2
p−lp

)
+

+��up−x1
p�−�up−x2

p���y
1
p−y2

p��

We also have from �2�4e�

y1
p−y2

p=
+1

up−x1
p

− +2

up−x2
p

�

Hence we know from Lemma 2

��x1
p−lp�−�x2

p−lp��

(
+1

x1
p−lp

− +2

x2
p−lp

)
� �+1−+2��

��up−x1
p�−�up−x2

p���y
1
p−y2

p�=��up−x1
p�−�up−x2

p��×
×
(

+1

up−x1
p

− +2

up−x2
p

)
� �+1−+2��
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So we have

�Fp�x
1�−Fp�x

2���x1
p−x2

p�� �+1−+2�+��up−x1
p�−

−�up−x2
p���y

1
p−y2

p�� p∈P� (3.5)

�Fp�x
1�−Fp�x

2���x1
p−x2

p��2�+1−+2�� p∈P�

�FP�x
1�−FP�x

2��T �x1
P−x2

P��2�P�·�+1−+2�=2s�+1−+2�� (3.6)

On the other hand, we show from �2�4d�

�FQ�x1�−FQ�x2��T �x1
Q−x2

Q�=0� (3.7)

Thus combining (3.3), (3.4), (3.6), (3.8) and Assumption A, we can conclude
(3.2) holds. So the proof is completed. �

THEOREM 7. The equation system 0�x�y�+�=0, i.e., the system (2.4) has at
most one solution for all +>0. Furthermore, the solution is continuous with
respect to the parameter +.

The proof is obvious from formula (3.2) in Lemma 3.

THEOREM 8. The equation system 0�x�y�+�=0 has a unique solution for all
+>0.
Proof. In view of Theorem 7, it is sufficient to show the existence. In order

to use the known results in [12] to predigest and complete the proof, we con-
sider the functions given by (2.2). Similar to the proof of Theorem 3, it is not
difficult to verify that the system (2.4) and the following perturbed nonlinear
complementarity problem are completely equivalent, denoted by PVIP�X�F �+�:

F�x�− ∑
i∈I∪J

yi�gi�x�−
∑
p∈P

yp�gp�x�−
∑
p∈P

yp+s�gp+s�x�=0�

yigi�x�=+� yi�0� gi�x��0� i∈ I∪J�

ypgp�x�=+� yp�0� gp�x��0� p∈P�

yp+sgp+s�x�=+� yp+s�0� gp+s�x��0� p∈P�

Since LICQ always holds at any point x∈�n and F is assumed to be strongly
monotone, and notice that the problem VIP�X�F� has unique solution (Theorem
1), we can conclude, from Theorem 3.15 in [12], that the problem PVIP�X�F �+�
given above has a solution for all +>0. So the system (2.4) has a solution,
moreover, we conclude from Theorem 4 that 0�x�y�+�=0 has a solution for all
+>0. The proof is finished. �
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4. The Strong Convergence of the ECA

In Section 3, we have studied the existence, uniqueness and continuity of the
solution of 0�x�y�+�=0. In this section, we will prove the solution �xk�yk� of
0�x�y�+k�=0 approaches to the unique solution �x∗�y∗� of the system (2.1), and
xk converges to the unique solution of (1.1).

LEMMA 4. Let �x+�y+� be the unique solution of the equation system
0�x�y�+�=0. If a set >⊂�+=�t∈��t>0� is bounded, then the solution set
��x+�y+��+∈>� is also bounded.
Proof. From the boundedness of >, without loss of generality, we suppose

+�@�∀+∈>. Let +̄>0 be a fixed parameter, we know from Theorem 8 that
0�x�y�+̄�=0 has a unique solution �x̄�ȳ�. Moreover, we have from (3.2) for any
+∈>

!�x+− x̄�2
��m+r+2s��+−+̄���m+r+2s��@++̄��

This shows that �x+ �+∈>� is bounded.
Next, we analyse the boundedness of �y+ �+∈>�. One has from (3.5)

�FP�x
+�−FP�x̄��

T �x
+
P − x̄P��s�+−+̄�+��uP−x

+
P�−�uP− x̄P��

T �y+− ȳ��

On the other hand, one knows from �2�4e�

uP− x̄P >0� ȳ>0� uP−x
+
P >0� �uP− x̄P�

T ȳ=s+̄� �uP−x
+
P�

T y+=s+�

So we have

��uP−x
+
P�−�uP− x̄P��

T �y+− ȳ�=�uP−x
+
P�

T y++�uP− x̄P�
T ȳ−

−�uP−x
+
P�

T ȳ−�uP− x̄P�
T y+

=s�+++̄�−�uP−x
+
P�

T ȳ−�uP− x̄P�
T y+

�s�+++̄�−�uP− x̄P�
T y+�

�FP�x
+�−FP�x̄��

T �x
+
P − x̄P��2s�+++̄�−�uP− x̄P�

T y+

�2s�@++̄�−�uP− x̄P�
T y+

Since �x+ �+∈>� has been proved to be bounded and F�x� is continuous, there
exists a constant M >0 such that

��FP�x
+�−FP�x̄��

T �x
+
P − x̄P���M� ∀+∈>�

Thus

�uP− x̄P�
T y+

�−�FP�x
+�−FP�x̄��

T �x
+
P − x̄P�+2s�@++̄��2s�@++̄�+M�
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This inequality and �uP− x̄P� y+�>�0�0� show that the set �y+ �+∈>� is bounded.
Thus the proof of Lemma 4 has been finished. �

THEOREM 9. Suppose that the parameter sequence �+k� chosen in ECA is arbi-
trary such that +k >0 and +k→0. Then the entire sequence ��xk�yk�� generated
by ECA converges to the unique solution �x∗�y∗� of the system (2.1), therefore,
�xk� converges to the unique solution x∗ of problem (1.1), that is ECA is strongly
convergent.
Proof. Firstly, from Lemma 4 and +k→0, we know that ��xk�yk�� is bounded,

so it has at least one limit point, and let �x̂�ŷ� be any given accumulation point.
Secondly, since �xk�yk� is a solution of 0�x�y�+k�=0, i.e., the system (2.4) for
+=+k, it is easy to verify �x̂�ŷ� is a solution of the system (2.1). Finally, in view
of the uniqueness of the solution of (2.1), we can conclude �x̂�ŷ�=�x∗�y∗�. Thus
��xk�yk�� has a unique accmulation point �x∗�y∗�, therefore the entire sequence
��xk�yk�� converges to the solution �x∗�y∗� of the system (2.1) by the boundedness
of ��xk�yk��. Furthermore, from Theorem 3, we conclude that the entire sequence
�xk� converges to the solution x∗ of problem (1.1). �

Theorem 9 indicates the ECA possesses satisfactory convergence. However,
in order to analyse further its numerical stability, we need to discuss further the
properties of the gradient �d0�x∗�y∗�0�. For this goal, the following additional
assumption is necessary.

ASSUMPTION B. Suppose the strict complementarity conditions hold at the
solution x∗ of problem (1.1), i.e.,

�x∗
i −li�Fi�x

∗�� 	=�0�0�� ∀i∈ I �u∗
j −x∗

j �−Fj�x
∗�� 	=�0�0�� ∀j∈J 

Fp�x
∗�>0� ∀p∈Pl

def= �p∈P � x∗
p−lp=0� 

Fp�x
∗�<0� ∀p∈Pu

def= �p∈P � up−x∗
p=0��

It is obvious, for the solution �x∗�y∗� of problem (2.1), that Assumption B and
the following conditions are equivalent:

�x∗
i −li�Fi�x

∗�� 	=�0�0�� ∀i∈ I �uj−x∗
j �−Fj�x

∗�� 	=�0�0�� ∀j∈J 

�x∗
p−lp�Fp�x

∗�+y∗
p� 	=�0�0�� �up−x∗

p�y
∗
p� 	=�0�0�� ∀p∈P�

THEOREM 10. Suppose that Assumptions A and B hold, then the function
0�x�y�0� is continuously differentiable at the solution �x∗�y∗� of (2.1), and the
gradient �d0�x∗�y∗�0�, so the Jacobian matrix ��d0�x∗�y∗�0��T , is nonsingular.
Furthermore there exists a constant c>0 such that

��d0�xk�yk�+k�
−1��c� for all sufficiently large k�
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Proof. By combining (2.8), (2.10)–(2.15), (2.18) as well as Assumption B, we
can conclude that the function 0�x�y�0� is continuously differentiable at point
�x∗�y∗� and �d0�x∗�y∗�0� has the same formula as (2.18). To complete the rest of
the proof, it is sufficient to verify the equation system �d0�x∗�y∗�0��wT �vT �T =
0 has a unique solution zero. Suppose that �wT �vT �T =�wT

I �w
T
J �w

T
P �w

T
Q�vT

P �
T ∈

��n+s� such that �d0�x∗�y∗�0��wT �vT �T =0, then we have from (2.18)

�d0�x∗�y∗�0�
(
w
v

)
=
(
D∗w+�F�x∗�R∗w+G∗v

H ∗w−R∗2
P v

)
=
(

0
0

)
� (4.1)

where the matrices D∗�R∗�G∗�H ∗�R∗2
P and so on are those defined by (2.10)–

(2.15) corresponding to �x∗�y∗�0�. So we obtain from (4.1) and (2.15)

�R∗w�T �D∗w+�F�x∗�R∗w+G∗v�=0� H ∗w−R∗2
P v=R∗1

P wP−R∗2
P v=0�

(4.2)

On the other hand, from formulas (2.8), (2.10)–(2.13), Assumption B and taking
into account �x∗�y∗� being a solution of (2.1), we know

�D∗
I �ii=2�x∗

i −li�Fi�x
∗��0�=

{
2� i∈ Il

def= �i∈ I � x∗
i −li=0� 

0� i∈ IF
def= �i∈ I � Fi�x

∗�=0��
(4.3a )

�R∗
I �ii=3�x∗

i −li�Fi�x
∗��0�=

{
0� i∈ Il 

2� i∈ IF �
(4.3b )

�D∗
J �jj =2�uj−x∗

j �−Fj�x
∗��0�=

{
2� j∈Ju

def= �j∈J � uj−x∗
j =0� 

0� j∈JF

def= �j∈J � Fj�x
∗�=0��

(4.3c )

�R∗
J �jj =3�uj−x∗

j �−Fj�x
∗��0�=

{
0� j∈Ju 

2� j∈JF �
(4.3d )

�D∗1
P �pp=2�x∗

p−lp�Fp�x
∗�+y∗

p�0�=




2� p∈Pl

def= �p∈P � x∗
p−lp=0� 

0� p∈Pu

def= �p∈P � up−x∗
p=0� 

0� p∈Plu

def= �p∈P � lp <x∗
p <up��

(4.3e )

�R∗1
P �pp=3�x∗

p−lp�Fp�x
∗�+y∗

p�0�=




0� p∈Pl 

2� p∈Pu 

2� p∈Plu�

(4.3f )

�D∗2
P �pp=2�up−x∗

p�y
∗
p�0�=




0� p∈Pl 

2� p∈Pu 

0� p∈Plu�

(4.3g )
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�R∗2
P �pp=3�up−x∗

p�y
∗
p�0�=




2� p∈Pl 

0� p∈Pu 

2� p∈Plu�

(4.3h )

Thus we obtain from (2.14) and the relations (4.3) above

�R∗�TD∗=R∗D∗=0� R∗2
P D∗2

P =0� (4.4)

Again, we obtain from (2.14)–(2.15) and the second equation of (4.2)

wTR∗G∗v=�R∗1
P wP�

TD∗2
P v=�R∗2

P v�TD∗2
P v=vT �R∗2

P D∗2
P �v=0� (4.5)

So, from the first equation of (4.2), formulas (4.4), (4.5), (2.14) and taking into
account the positive definition of matrix �F�x∗�, we have

�R∗w�T�F�x∗��R∗w�=0� R∗w=0� wQ=0� R∗1
P wP =0� (4.6)

Furthermore we get from (4.1), (2.14)–(2.15) and (4.6)

0=D∗w+G∗v=




D∗
I wI

D∗
JwJ

D∗1
P wP+D∗2

P v
0


� (4.7)

Adding the second equation of (4.6) into this equation and using �4�3a�–�4�3d�,
we have

�R∗
I +D∗

I �wI =2wI =0� �R∗
J +D∗

J �wJ =2wJ =0�

wI =0� wJ =0� �R∗1
P +D∗1

P �wP+D∗2
P v=0�

On the other hand, the second equation of (4.2) and the fourth equation of (4.6)
show that

R∗2
P v=R∗1

P wP =0�

This along with �4�3f �–�4�3h� shows that

vPl
=0� vPlu

=0� wPu
=0� wPlu

=0�

Finally, using D∗1
P wP+D∗2

P v=0 (see (4.7)), �4�3e� and �4�3g�, we easily obtain
that vPu

=0 and wPl
=0, hence v=0�wP =0 and w=0.

Summarizing the above discussions, we have proved that the equation sys-
tem �d0�x∗�y∗�0��wT �vT �T =0 has a unique solution zero. So the proof is
completed. �
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5. Implicit Continuation Algorithm

In this section, we further consider the parameter + in (2.7) as a variable rather
than a given parameter sequence �+k�. So the following equation system with
variable z=�x�y�+�∈�n+s+1 is introduced.

B�z�=B�x�y�+�=
(
0�x�y�+�

e+−1

)
=
(

0
0

)
� (5.1)

It is obvious that the function B is continuously differentiable at any point
�x�y�+� with +>0, and its gradient �B has the following expression.

�B�x�y�+�=�zB�z�=
(
�d0�x�y�+� 0�n+s�×1

�+0�x�y�+� e+

)
� (5.2)

From Theorems 3, 4, 5 and 10 in this paper, one immediately has the following
results.

THEOREM 11. (i) The problem (1.1) and the equation system (5.1) are equiva-
lent, i.e., x is a solution of (1.1) if and only if there exist a y∈�s and +∈�1

(in fact +=0) such that z=�x�y�+� is a solution of (5.1). Therefore (5.1)
has a unique solution.

(ii) The gradient matrices �B�z� are nonsingular at any point z=�x�y�+� with
+>0.

(iii) If Assumptions A and B hold, then the function B�x�y�+� is continuously
differentiable at the solution �x∗�y∗�0� of (5.1), and the gradient
�B�x∗�y∗�0� is nonsingular.

The results above indicate that the equation system (5.1) possesses some good
properties, so we can use the Newton’s type methods for solving systems of
nonlinear equations (see Chapter 2 in [17]) to solve (5.1), and we now present a
slight modified Newton’s type for (5.1) as follows.

Implicit continuation algorithm (ICA for abbreviation)

Step 0. Choose stopping tolerances ;1�;2 >0 and a starting point z0=�x0�y0�+0�
with x0∈X= �l�u
�y0∈�s and +0 >0. Let k=0, go to Step 1;

Step 1. Solve the system of linear equations

A�zk�Tdz=−B�zk�� (5.3)

to obtain a solution dzk=�dxk�dyk�d+k�, where matrix

A�zk�=
(
Ad�z

k� 0�n+s�×1

A+�z
k� e+k

)
� (5.4)

is an approximation of the gradient �B�zk� in a sence such that �5�3� is
solvable;
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Step 2. Generate a new iterative point by zk+1=zk+dzk;
Step 3. If �dzk��;1�zk� or �B�zk+1���;2, then stop and choose zk+1 and

xk+1 as approximate solutions of problems �5�2� and �1�1� respectively.
Otherwise, let k �=k+1, go back to Step 1.

The main properties of the ICA are summarized in the following theorem, and
which can be proved easily by using directly the results on ECA or Newton’s
method [17].

THEOREM 12. (i) If +>0 and d+ satisfies e+d+=1−e+, then d+∈�−+�0� and
++d+∈�0�+�, (the proof is elementary). Therefore the sequence �+k� generated
by the ICA is positive and decreasing. Furthermore, if one chooses Ad�z

k�=
�d0�zk��A+�z

k�=�+0�zk�, then A�zk�=�B�zk� is nonsingular, therefore the
system of linear equations (5.3) has a unique solution for all k.

(ii) Assume that Assumptions A and B hold. If the matrices Ad�z
k� and A+�z

k�
are computed by Ad�z

k�=�d0�zk��A+�z
k�=�+0�zk�, and the starting point z0

is located in a small neighbourhood of the solution z∗=�x∗�y∗�0�. Then the ICA
converges to z∗ at a quadratic rate.

6. Numerical Results

In this section, to test the efficiency of the two proposed algorithms (the ECA
and the ICA), several examples have been considered. In the ECA, the error
function is defined by formula (2.22), the equation system 0�x�y�+k+1�=0 is
solved by Newton’s method, and the perturbed parameter +k=�1/8�k. In the
ICA, we compute Ad�z

k� and A+�z
k� by Ad�z

k�=�d0�zk� and A+�z
k�=�+0�zk�.

Our numerical tests were done at a computer with Intel CPU PI 166MHz and
DOS6.22.

EXAMPLE 1. This problem is taken from [10, 13]. Let

F�x�=




3x2
1+2x1x2+2x2

2+x3+3x4−6
2x2

1+x2
2+x1+10x3+2x4−2

3x2
1+x1x2+2x2

2+2x3+9x4−9
x2

1+3x2
2+2x3+3x4−3


� (6.1)

l=�0�0�0�0�T �x�u=�10�10�10�10�T �

the function F�x� is not strongly monotone, and it has two solution points

x∗=�
√

6/2� 0� 0� 0�5�T � x̄∗=�1� 0� 3� 0�T �

however the two proposed algorithms are still effective for solving it.
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EXAMPLE 2. This problem is a slight modification of the Example 2 in [17].
Take

F�x�z�=
(
f �x�+ATz
−Ax+b

)
�

�0�0�0�0�0�0�0�0�0�T = l�

(
x
z

)
�u

=�10�5�+��2�+��+��+��+��+��T �

where x∈�5, z∈�4 and

f �x�=




3�0 −4�0 −16�0 −15�0 −4�0
4�0 1�0 −5�0 −10�0 −11�0

16�0 5�0 2�0 −11�0 −7�0
15�0 10�0 11�0 3�0 −10�0
4�0 11�0 7�0 10�0 1�0







x1

x2

x3

x4

x5


+




0�004x4
1

0�007x4
2

0�005x4
3

0�009x4
4

0�008x4
5


+



−15
10
−50
−30
−25


�

A=




0�0 0�0 −0�5 0�0 −2�0
−2�0 −2�0 0�0 −0�5 −2�0

2�0 2�0 −4�0 2�0 −3�0
−5�0 3�0 −2�0 0�0 2�0


� b=



−10
−10

13
18


�

It can be shown (see Section 2.4 in [10]) that this problem is equivalent
to VIP�C�f � with the feasible set C=�x∈�5 �Ax�b�lx�x�ux� with lx=
�0�0�0�0�0�T �ux=�10�5�+��2�+��T , and VIP(C�f � is a slight modification
of the Example 2 in [17].

EXAMPLE 3. A Walrasian Equilibrium Model (see [3, 16]).

Consider a case with three commodities (one produced commodity and two
resources), one profit maximizing producer and one utility maximizing household,
which both are price takers. In particular, let the technology matrix A and the
initial endowments vector b be given by

A= �1−1−1
T and b=�0�b2�b3�
T � with b2 >0� b3 >0�

Let the household demand functions be

di�p1�p2�p3�=
ai�b2p2+b3p3�

pi

= aiH

pi

� i=1�2�3�

where H=b2p2+b3p3 denotes income. We observe that these demand functions
are well defined on the interior of the price simplex S̄=�p�p1+p2+p3=1� pi >
0�. Finally, let the budget shares of household demand be a=�a1�a2�a3�=�!�1−
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!�0�, with 0<!<1. We have chosen b1=0 and a3=0 in order to simplify the
analysis.

In order to obtain an LCP that possibly could provide an approximate equilib-
rium, we have to choose a numeraire. So there are three alternative LCPs.

LCP1 �

F �y�p2�p3�=

 p2+p3−p̄1

−y+d22p2−d23p3+b2−d2

−y+b3




l=�0�0�0�T ��y�p2�p3�
T
�u=�+��+��+��T �

LCP2 �

F �y�p1�p3�=

 −p1+p3+p̄2

y+d11−d13−d1−d12p̄2

−y+b3




l=�0�0�0�T ��y�p1�p3�
T
�u=�+��+��+��T �

LCP3 �

F �y�p1�p2�=

 −p1+p2+p̄3

y+d11p1−d12p2+b2−d2−d1−d13p̄3

−y++d22p3+b2−d2−d23p̄3




l=�0�0�0�T ��y�p1�p2�
T
�u=�+��+��+��T �

The numerical results of the ECA and the ICA for solving the three problems
above with variant initial points are reported in Tables 1–10, respectively, where
IP – initial point, NI – the number of iterations; APS – approximate solution;
EV – error value.

Table 1. Numerical results of the ECA on Example 1

IP x0 IP y0 NI APS x∗ APS y∗ EV err�x∗�y∗�


1�00
1�00
1�00
1�00







1�00
1�00
1�00
1�00


 24




1�22474487e+00
1�62949468e−12
−5�5566793e−12
5�00000000e−01







8�46169279e−13
7�46920967e−13
7�49355463e−13
7�88498039e−13


 2.01064521e−22




1�10
0�10
3�10
0�10







1�00
1�00
1�00
1�00


 13




1�00000000e+00
4�69460481e−13
3�00000000e+00
3�63797338e−12







1�61692039e−12
1�45526580e−12
2�07892468e−12
1�45518648e−12


 2.59880701e−22



EXPLICIT AND IMPLICIT CONTINUATION ALGORITHMS 79

Table 2. Numerical results of the ICA on Example 1

IP x0 IP �y0�+0� NI APS x∗ APS �y∗�+∗� EV �B�z∗��2




1�0
1�0
1�0
1�0







1�0
1�0
1�0
1�0
1�0


 8




1�2247434218e+00
4�3232204412e−09
−9�1982990627e−06
5�0000771154e−01






−1�3346326970e−11
1�0904831179e−12
−4�7897223540e−11
4�29972651111e−11
4�5650222062e−11


 3.8818003754e−10




1�1
0�1
3�1
0�1







1�0
1�0
1�0
1�0
1�5


 5




1�0000000066e+00
4�3212390225e−10
2�9999999967e+00
3�6705416644e−09







1�9440958374e−09
2�0989869559e−09
3�59470188894e−09
2�2241317840e−09
2�0838376113e−08


 1.9823366913e−14

Table 3. Numerical results of the ECA on Example 2 �x̂=�x1�x2�x3�x4�x5�z1�z2� z3�z4�
T �

y=�y1�y2�y4�
T �

IP x̂0 IP y0 NI APS x̂∗ APS y∗ EV err�x∗�y∗�

1.00 9�07622922e+00
1.00 4�84329640e+00
1.00 2�88112641e−14
1.00 1�00 1�70542761e−14 1�96910429e−12
1.00 1�00 14 5�00000000e+00 1�16078344e−11 2�67484990e−22
1.00 1�00 3�72905886e+01 9�09494377e−13
1.00 6�56348271e−14
1.00 1�13016664e−11
1.00 4�68209051e−14

5.78 9�07622922e+00
3.2363 4�84329640e+00
654 2�86561719e−14
1.40 564 1�84729287e−14 1�96909359e−12
1.80 65 14 5�00000000e+00 1�16078369e−11 2�67504774e−22
765 897 3�72905886e+01 9�09494380e−13
8.6 6�50658567e−14
24 1�13016687e−11
76 4�74602708e−14
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Table 4. Numerical results of the ICA on Example 2 (x̂=�x1�x2�x3�x4�x5�z1�z2�z3�z4�
T �

y=�y1�y2�y4�
T �

IP x̂0 IP �y0�+0� NI APS x̂∗ APS �y∗�+∗� EV �B�x̂∗�y∗�+∗��2

1.00 9�07622922e+00
1.00 4�84329640e+00
1.00 6�43892147e−17
1.00 1�00 1�55707247e−15 1�60182607e−18
1.00 1�00 12 5�00000000e+00 1�22089633e−18 5�25706715e−28
1.00 1�00 3�72905886e+01 −3�04867948e−19
1.00 1�00 4�42539789e−16 −3�03567691e−21
1.00 1�99425964e−18
1.00 −3�34993192e−16

5.78 9�07622922e+00
3.2363 4�84329640e+00
654 −9�95673159e−16
1.40 564 1�10915402e−15 −7�29484300e−18
1.80 65 17 5�00000000e+00 −4�65264345e−16 5�15581522e−28
765 897 3�72905886e+01 −3�10570379e−17
86 10�5 1�63895269e−16 −1�81117110
24 −4�03188655e−16
76 4�39329347e−16

Table 5. Numerical results of the ECA on Example 3 �LCP1� ��b1�b2�b3�=
�0�100�14�� �p̄1�p̄2�p̄3�=�0�33�0�27�0�40�; vector x=�y�p2�p3�)

IP x0 NI APS x∗ EV err�x∗�
 11

453
531


 13


1�4000000000e+01

4�7180876579e−13
3�3000000000e−01


 1�9457855411e−21


0�34

8756
765


 13


1�4000000000e+01

4�7180919947e−13
3�3000000000e−01


 1�9457855424e−21

Table 6. Numerical results of the ICA on Example 3 �LCP1� ��b1�b2�b3�=
�0�100�14�� �p̄1�p̄2�p̄3�=�0�33�0�27�0�40�; vector x=�y�p2�p3�)

IP �x0�+0� NI APS �x∗�+∗� EV �B�z∗��2


11
453
521
11


 19




1�4000000000e+01
−3�1921078347e−16

3�3000000000e−01
1�9315435295e−20


 2�0074017681e−32




0�34
8756
765
7


 14




1�4000000000e+01
−1�5632975631e−16

3�3000000000e−01
5�5882615594e−20


 5�0330855092e−33
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Table 7. Numerical results of the ECA on Example 3 �LCP3� ��b1�b2�b3�=
�0�51�14�� �p̄1�p̄2�p̄3�=�0�33�0�27�0�40�; vector x=�y�p1�p3�)

IP x0 NI APS x∗ EV err�x∗�
1�0

1�0
1�0


 13


2�8683501685e+00

2�7000000000e−01
1�3073385451e−12


 2�9322500161e−21


1561

53
21


 13


2�8683501685e+00

2�7000000000e−01
1�3072339351e−12


 2�9322008120e−21

Table 8. Numerical results of the ICA on Example 3 �LCP2� ��b1�b2�b3�=
�0�51�14�� �p̄1�p̄2�p̄3�=�0�33�0�27�0�40�; vector x=�y�p1�p3�)

IP �x0�+0� NI APS �x∗�+∗� EV �B�z∗��3




1�0
1�0
1�0
1�0


 8




2�8683501684e+00
2�7000000000e−01
3�273844300e−17

−2�2317510187e−20


 4�3001687018e−30




1561
53
21
11


 17




2�8683501684e+00
2�7000000000e−01
1�4704913546e−16
8�4911728205e−20


 4�8291174800e−30

Table 9. Numerical results of the ECA on Example 3 �LCP3� ��b1�b2�b3�=
�0�10�14�� �p̄1�p̄2�p̄3�=�0�33�0�27�0�40�; vector x=�y�p1�p2�)

IP x0 NI APS x∗ EV err�x∗�
1�0

1�0
1�0


 13


3�6159483626e−11

5�0501823854e−01
5�0745535714e−01


 3�1614996538e−21


411

53
41


 13


3�6159483626e−11

5�0501823854e−01
5�0745535714e−01


 3�1614996538e−21

Table 10. Numerical results of the ICA on Example 3 �LCP3� ��b1�b2�b3�=
�0�10�14�� �p̄1�p̄2�p̄3�=�0�33�0�27�0�40�; vector x=�y�p1�p2�)

IP �x0�+0� NI APS �x∗�+∗� EV �B�z∗��2




1�0
1�0
1�0
1�0


 14




5�3992242068e−18
5�0501823854e−01
5�0745535714e−01

−2�2317510187e−20


 1�1341557229e−23




411
53
41
14


 26



−7�0215502463e−18
5�0501823854e−01
5�0745535714e−01
3�6062379681e−20


 1�4028287679e−24
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7. Concluding Remarks

In this paper, we first have transformed the primal problem (1.1) into the equi-
valent system (2.1), then have introduced the perturbed complementarity prob-
lem (2.4) associated with (2.1), and have reformulated (2.4) as the equivalent
nonlinear equation systems (2.7) or/and (5.1) with the help of the generalized
complementarity function given by (2.5) and a special function e+−1.

Basing on the two systems of nonlinear equations (2.4) and (5.1), we have
presented an explicit continuation algorithm (ECA) and an implicit continuation
algorithm (ICA) for solving the primal problem (1.1), respectively. We have
proved that the ECA and ICA possess satisfactory convergent properties and
numerical stability under the given Assumptions A and B.

We have tested the two proposed algorithms on some practical examples, and
the results have shown that the ECA and ICA are numerically effective.

We also point out that the gradients �d0�x∗�y∗�0� and �zB�x∗�y∗�0� may be
singular and the numerical effect of the two proposed algorithms must not be
stable if Assumption B does not hold. In this case, one can use some modified
Newton method or quasi-Newton method to solve the system (2.4) or/and (5.1).

About the function e+−1 in the equation system (5.1), it can be replaced by
another function h�+� satisfying the conditions as follows:

(i) h�+� is continuously differentiable and h′�+�>0 for all +∈�1;
(ii) h�+�=0 if and only if +=0;
(iii) If +>0 and d+ satisfies h�+�+h′�+�d+=0, then ++d+>0.

Compared the algorithms in this paper with the existing optimizing algorithms
[4, 6, 11], the latter’s assumptions on the function F�x� are weaker than the
Assumption A stated in Section 2, but some additional assumptions are required
which this paper dose not need, and the former is more simple and has smaller
amount of computation, moreover, the former has more satisfactory convergent
properties.

Finally, we conjecture that our algorithms can be improved such that they
are suitable for the case of F�x� being only monotone by perturbing F�x� as
F�x�+Fx.
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